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(III) ATTEMPTS TO JUSTIFY INDUCTION 
A POSTERIORI. 

(B) PROBLEMATIC. 

AT the end of the first part of this paper we had seen that, for 
reasons given by Hr. von Wright which seem conclusive, it is 
idle to hope that an inductive generalisation which is genuinely 
synthetic can ever be established with certainty by deductive 
reasoning from instantial premisses alone or combined with 
postulates about nature. We have now to consider whether 
it is possible to show by means of the principles of Probability 
that, under certain conditions, instantial premisses can render 
an inductive generalisation highly probable. Even if this can 
be shown we shall not be at the end of our troubles. For the 
meaning and implications of statements of the form 'p has 
such and such a degree of probability given h' are not im
mediately obvious or universally agreed upon. It would remain 
therefore to decide what interpretation to put on such statements; 
and to consider what relevance, if any, the fact that an induc
tive generalisation was highly probable with respect to certain 
instantial data would have to expectation and to action. There
fore, as Hr. von Wright points out, there are two problems, one 
of formal analysis and one of interpretation. We will now con
sider them in turn. 
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(1) Formal Analysis of Inductive Probability.-Let p and k 
be any two propositions. Consider the as yet undefined ex
pression' p has with respect to k a probability of degree x'. 
The form of this expression tells us that' probability' is under
stood to be a relation which one proposition may bear to another, 
and that this relation has magnitude; but it tells us nothing 
further. We therefore proceed to lay down a set of postulates 
which together govern the use and the transformations of such 
expressions but do not commit us to any particular analysis of 
their meaning. 

Postulates.-Hr. von Wright gives six postulates for this 
purpose. I shall take as the first the one which he takes as 
fourth. They run as follows. 

(i) A given p has with regard to a giveh k only one degree of 
probability. (On the basis of this we can talk of ' the probability 
of p with respect to k '. I shall symbolise this, as Johnson and 
Keynes do, by the symbol p/k. So the statement that 'the 
probability of p with respect to k is x' will be written in the 
form of the equation p/k = x, which might be compared with 
such an equation as dy/dx = z in the differential calculus. 
Following Johnson I shall call the proposition on the left of the 
solidus the' proposal' and that on the right of it the' supposal '.) 

(ii) The possible numerical values of such expressions as p/k 
are all the real numbers from 0 to 1, both inclusive. 

(iii) If h implies p, then p/h = l. 
(iv) If h implies not-p, then p/h = O. (It must not be assumed 

that the conve:rse of this or of the preceding postulate is true.) 
(v) p & q/h = p/k X q/p & h = q/h X p/q & h. 
(vi) p v qjk= p/h + qjk - P & qlk. 

The last two postulates, which may be called respectively the 
Conjuncti'Ve and the Disjunctive postulate, enable us to express 
the probability of a conjunctive or a disjunctive proposal, with 
respect to a given supposal, in simpler terms. It should be noted 
that, unless certain special conditions are fulfilled, neither 
p & qjh nor p v qjk can be expressed wholly in terms of p/h 
and qlh. The necessary and sufficient condition for this is, 
in the case of the Conjunctive Postulate, that q/p & k = qjk 
and (what is entailed by this) that pig & k = p/h. In the case 
of the Disjunctive Postulate the condition is that p & qlk = O. 
The first condition .is that p and q are independent with respect 
to h; the second is that they are exclusive with respect to h. 

Lemmas.-In order to make use of these Postulates we shall 
constantly need certain immediate consequences of them. I 
shall therefore proceed to prove these in a series of lemmas. 
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Lemroo 1. plh = 1 - plh. 
For, since the disjunctive proposition p v p is known to be true, 
it is iinplied by any proposition h. Therefore, by Postulate (iii), 
p v P Ih = 1. But p and P are mutually exclusive. Therefore, 
by Postulate (vi), p v plh = plh + plh, which proves the 
proposition. 

Lemroo II. If P :::J g, then glp & r = 1, whatever r may be. 
For, if p :::J g, then p & r :::J g, whatever r may be. Therefore, 
by Postulate (iii), glp & r = 1. . 

Lemma III. If two propositions, p and q, are logically 
equivalent, i.e., if each implies the other, then their probabilities 
with respect to any proposal h are equal. 

From Postulate (v) and Lemma II it follows that, if p implies 
g, then p & glh = plh. From the same. premisses it follows 
that, if g implies p, then p ~ glh = glh. Therefore, if p is 
equivalent to g, plh = gin. 

Lemma IV. If gl, g2' ... gn area set of n mutually ex
clusive alternatives, and if p implies the disjunction of them, 

r=n 
then pin = S grin x pig .. & n. 

r=1 

In general if p :::J g then p == p & g. Therefore in the present 
case 

p == : p & gl • V • P & g2 . V • • • p & g ... v . . . p & gn' 

Now the alternatives on the right of this equivalence are mutually 
exclusive. Therefore, by Postulate (vi) and Lemma Ill, 

r==n 
plh = S p & grlh. 

r=l 

And, by Postulate (v), p & grlh = grlh X pig .. & h; which proves 
the proposition. 

Lemma V. If ql' ga, . . . gn are not only mutually exclusive 
but also collectively exhaustive, then, whatever p may be, 

r-n 
plh· = S g .. lh X pig .. & h. 

- r=1 
For the disjunction of all the g's is now a true proposition, 

and so it is implied by every proposition and therefore by p 
whatever p ma.y be. Hence the conclusion follows as in Lemm~ 
IV. 

Lemma VI. I & h - plh X glp & k 
1! g - q/k . 

This is an immediate consequence of Postulate (v). It may 
be called the Principle of Inverse Probahility .. 
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Lemma VII. If ql> q2' ... qn are a set of mutually exclusive 
alternatives, and if p implies the disjunction of them, then 

qr/h X p/qr & h 
r n 

S q,/h X p/q, & h 
r= 1 

This is an immediate consequence of Lemmas IV and VI. 
It may be called the Bayes Principle. If each of the alternatives 
implies p, all terms of the form p/qr & h become equal to 1, and 
the Principle takes the simplified special form 

q,/p & h = r_q;/h . 
S qr/h 

r=l 

Lemma VIII. If q1, q2, ... <in are a set of mutually exclusive 
alternatives, and if p implies the disjunction of them, and if 
qr, ... q'k are a selection of k of them, then 

.~k 

S q,./h X p/qr8 & h 
q Ip & h = 8=--====1 :-____ _ 

rk; 1'~n 

S qr/h X p/qr & h 
,= 1 

This is an immediate consequence of Lemma VII and Postulate 
(vi). It may be called the Extended Bayes Principle. If each 
of the alternatives implies p it simplifies in the same way and 
for t.he same reason as the Bayes Principle. 

Theorems connecting Probability with Induction.-Hr. von 
Wright proceeds to prove from his postulates a number of 
theorems about the probability of inductive generalisations with 
respect to instantial propositions, and to state the conditions 
under which they hold. 

My own experience is that I can see best what such theorems 
and their conditions really amount to when I exemplify them 
by concrete illustrations of drawing counters from bags, throwing 
dice, etc. I suspect that many others will be in the same position. 
I propose therefore to begin in each case ·with a concrete example 
and then to generalise from it. In each theorem I shall conduct 
the proof in my own way, which mayor may not be exactly 
that followed by Hr. von 'Vright; and I carry the argument 
up to the point where nothing further is needed but an application 
of pure mathematics which the reader will be asked to take Oil 

trust. 
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Before going further it is desirable to make the following . 
remarks about notation. In some of our theorems we have to 
consider the probability of a proposition with respect to a 
supposal which includes data about the probability of another 
proposition. E.g., we may ask: What is the probability of 
drawing three white counters in succession from a bag on the 
supposition that the probability of drawing a white counter 
on each occasion is so-and-so ~ 

We need some system of bracketing which will, e.g., clearly 
distinguish the following two entirely different. propositions .. 
(i) , The probability of p, on the supposition that the probability 
of q-and-r with respect to h is X, is y.' And (ii) , The probability 
of p, on the supposition that q is true and that the probability 
of r with respect to h is x, is y'. Now this might be done by 
using a combination of round, square, and curly brackets; but 
this would be extremely clumsy. Instead I shall make use of 
dots according to the following convention. When the main 
supposal contains data about probability the first solidus will 
be immediately followed by one or more dots. These dots will 
constitute the beginning of a bracket, and this will be closed by 
the first occurrence of the same number of dots further to the 
right of the expression. Thus, e.g., the first of the two proposi
tions enunciated above would be expressed by the formula 

pi . q & rlh = x . = y. 
And the second by the formula 

pi : q . & . rlh = x : = y. 
We are now in a position to deal with the Theorems. 
Theorem l. Bernoulli's Theorem. (1·1) Direct Principle of 

Greatest Probability.-Suppose that there is a bag containing 
n counters, of which exactly m are white. A sequence of N 
trials is made according to the following rule. On each occasion 
one counter is drawn, the colour is noted, the coUnter is then 
replaced, and the contents of the bag are well stirred up before 
the next trial is made. These rules ensure the fulfilment of the 
following conditions :-

(i) The sequence of trials is in principle indefinitely 'extensible. 
(ii) The probability that the counter drawn at the r + 1-th 

trial will be white is independent of the frequency and the order 
with which white drawings have occurred among the previous 
r trials. 

(iii) The probability that the counter drawn will be white on 
anyone occasion is the same as the probability that it will be 
white on any other occasion. (In our example it is m!rion 
every occasion.) 
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The second and third of these conditions may be called the 
Bernoullian Oonditions.The bearing of the three conditions is 
made plain by considering examples in which they are not ful
filled. If, e.g., the rule were that the counters drawn are not 
to be replaced, all three conditions would break down. The 
sequence of drawings would end at the n-th term. Theproha
bility that the r + l-th trial will give a white counter will depend 
on the number of white counters which have been drawn in the 
previous r trials. If, e.g., p have been white, the oog will 
contain n - r counters, of which m - p are white, at the time 
when the r + loth trial is to be made; so the probability that 

this trial will give a white result is m - p. Suppose, again, 
n-r 

that the drawings were to be made alternately from two bags, 
each containing n counters, one of which contained ml whites 
and the other m2 whites. Suppose that the counters were to be 
replaced after each drawing. Then conditions (i) and (ii) would 
hold, but condition (iii) would bre{tk down. 

We ask ourselves the question: Given that the Bernoullian 
conditions hold, what is the most probable proportion of whites 
in a sequence of N trials 1 The answer is that the most probable 

number of whites is the nearest integer to '!!!: X N, and there-
n 

fore the most probable proportion of whites is this integer divided 
byN. 

It, remains to generalise this proposition and to prove it. 
Let Q be any characteristic present in every term of a series 

of trials which can be extended indefinitely. Let R be another 
characteristic (or a determinate form of Q) which may be present 
in any proportion of the instances of Q. Let us assume (a) that 
the probability of an instance of Q being R is independent of the 
number and distribution of instances of R among the previous 
instances of Q; and (b) that the antecedent probability of any in
stance of Q being R is the same, viz., p. We will symbolise these 
two suppositions by the conjunction h. &. R(x)/Q(x) & h = p. 
Let us denote the relative frequency of R's among the first N 
instances of Q by h(R ; Q). Then 

r 
fN(R; Q) = N' / : h . & . R(x)/Q(x) & h = P 

is a maximum when r is the nearest integer to pN. This is the 
Direct Principle of Greatest Probability. 

The proof is as follows. The proposition fN(R; Q) = N-
is the same as the proposition that there have been r instances of 
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R among the first N instances of Q. Now these r insti!.nces of 
R. might have been distributed among the N insti!.n~a of Q in 
~Cr different ways. So the proposition in question is equivalent 
to the disjunction of NCr Plutually exclusive alternatives, each, 
of which is a conjunction of N conjuncts. A typical one of these 
alternatives would be the proposition 

R(Xt) &. . . R(xr ) & R(xr+1) &. . . R(~), 
which represents the possibility that all the r R's come first and 
then are followed. by all the N - r non-R's. Since the alternatives 

are mutually exclusive, the probability that fN(R; Q) = N 
with respect to the assumed data is equal, by Postula.te (vi), 
to the sum of the probabilities of the several alternatives with 
respect to the same data. Now these data include the Bernoulli 
conditions, in accordance with which the probability of any 
instance of Q being R is the same as that of any other instance 
being R and is independent of the number and the distribution 
of R's among the preceding Q's. Therefore, by Postulate (v) 
and Lemma I, the probability with respect to the assumed data 
of each of the conjunctive alternants is the same, viz., pr(l-,-p)~-r. 
Therefore the sum of these probabilities is ~Crp'(1 _ p)~-'. 
So we have proved that . 

r 
fN(R ; Q) = N . / : h . &, • Rx/Qx & h = p : = NCrP'(1 - p)~-r. 

It is then a matter of elementary Q,lgebra to show that 
NCrP'(I_p)N-r is a maximum for a fixed value of N when r 
is the nearest integer to pN; and this is what we set out to prove. 

(1·2) Direct Principle of Great Numbers.-This is the second 
part of the Bernoulli Theorem. It may be stated accurately 
in words as follows. Let 3 and E be any two pre-assigned quan
tities. Then,no matter how small they may be, there is a series 
of Q's such that for every longer series of Q's than this the prob
ability that the proportion of R's in it will not differ from p by 
more than 3 does not differ from I by more than E. 

The propositi(;m can be stated more colloquill.lly but less ac
curately as follows. By continuing the series of Q's far enough 
you can always ensure that the probability of the proportion 
of R's in it differing by as little as you please from p win differ 
by as little as you please from 1. The accurate expression for 
this proposition in oUr symbolism is 

(3, E) : : • (gn) : : N > n ::» N :fN(R ; Q) . v p ± 3 . / : h. &; . Rx/ 
Qx & h = p: ;;;.. 1 - E. 
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The proof of this depends on the following two propositions 
of pure mathematics. (i) Stirling's Thwrem that when n is 
large n! approximates to nne-nV2nn. (ii) The fact that the 
sum of a very large number of very small terms can be expressed 
as the integral of a function between two limits. The argument 
is as follows. 

To say that the relative frequency of R's in a series of N Q's 

does not fall outside a certain range M N± r is equivalent to 

saying that it has one or other of the 21' + 1 possible values 

M-1' M-1'+1 M M+1 M+1' 
-W- N' .•. N' -W-"" -W-. 

So the proposal iN(R ; Q) ~- p ± S is in fact a disjunctive pro
position in which the various alternants are mutually exclusive. 
Therefore, by Postulate (vi), its probability with respect to the 
supposal is equal to the sum of the probabilities of the several 
alternants with respect to the SaID() supposal. Now these are 
already known from the first part of the Theorem. If N is 
very great, the number of altern;ltives included in even a small 
interval 0 will be very great. For the number is 2r + 1 where 
r = NS. Again, the probability of the proportion of R's being 
exactly anyone of these alternative fractions is very small. 
Therefore we have the necessary and sufficient conditions for 
replacing the sum by an integral. Again, since the probabilities 
of the several alternative proportions of R's among the N Q's, 
as determined by the first part of the Theorem, are all of the 
form 

N! M + k(l )N - M k 
(M + k) !(N - M - k) !p. - P 

where both Nand M are large, we can apply Stirling's Theorem 
to them. 

As a result of these two considerations we can show by mere 
mathematical manipUlation that as N increases 

iN(R; Q) :::.. P ± S . I:h. &. RxjQx & h = p 

approaches -===== e-2NM x 
1 JNIl Xi d 

V27TNpq -Nil 

where we write q as an abbreviation for 1 - p . . Now it is easy 

~N8 
to show that the latter expression is equal to _ ~-f 2pq e-flJ·dx. 

V7To 
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Now, however small S may be, the upper limit of this integral 
can be made as large as we please by sufficiently increasing N. 
And it is known that the integral can be made to differ from 
tv'; by as little as we please by making its upper limit large 
enough. Therefore, however small Sand € may be, the expression 
as a whole can be made to differ from 1 by less than € if N be 
sufficiently increased. And this is what we had to prove. 

Them-em 2. The Inverse Bernoulli Theorem. (2·1) Inverse 
Principle of Greatest Probability.-The theorem with which we 
are now to be concerned is called by Hr. von Wright Bayes's 
Theorem. I prefer the name which I have given to it. Certainly 
this theorem depends upon our Lemma VII, which I have called 
Bayes's. Principle; but the same may be said of almost all 
applications of inverse probability. 

In the Bernoulli Theorem the proposal was a statistical pro
position, and the supposal contained a pIObability proposition. 
In the Inverse Bernoulli Theorem the proposal is a probability 
proposition, and the supposal contains a statistical proposition. 
So we are now concerned with the probability of a probability 
having a certain value, given that a frequency has a certain 
value. This is not an easy notion, and it is particularly im
portant to make its meaning plain by means of an example of 
drawing counters from bags. 

Suppose that there are a number of bags, each containing n 
counters. We will call them B1, Bs, . . . Br , • • • Bz• We are 
told that the first contains m1 white counters, the. second m2 

white counters, and so on. We are told that someone has made 
N drawings from one and only one of these bags and that the 
Bernoulli conditions have been fulfilled, i.e., he has replaced the 
counter after each drawing in the bag from which he drew it 
and has stirred the counters well before drawing again. What 
we are not told is the particular bag from which the drawings 
have been made. 

If the bag used happened to be Bl the probability at each 

drawing that the counter drawn would be white was mI. if 
n' 

m 
it happened to be Bs this probability was nS ; and so on. 

So what might be called 'the antecedent probability that the 

antecedent probability of drawing a white was mr , is simply 
, n 

the antecedent probability that the bag from which the drawings 
were made was Br , i.e., the one in which the proportion of white 

. mr 
counters IS -. 

n 
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Now this probability might be given to us by the rules of the 
game. Suppose, e.g., that we were told that there was, in 
addition to the z bags already mentioned, another bag containing 
n1 counters marked' 1 " n2 counters marked' 2', and so on, 
thoroughly mixed up. We are told that the experimenter ~t 
drew a single counter from. this bag and thep made his drawings 
from the bag which bears the number marked on the counter 
which he had drawn. The probability, with respect to this rule, 
that he would have drawn a counter marked with the number 
, r ' is of course 

n,. 
n1 + n2 +. nz' 

Now, given the rule, this is the probability that he will m;tke his 
experiments on bag Br • And, given the information abollt the 
constitution of the contents of tbe bags, this is the probl1bility 
that the probability of drawing a white counter on each QCcasion 

throughout his experiment was mr. 
n 

Suppose, finally, that we are told that N drawings have been 
made and that on M of these occasions a white counter has been 
drawn. The question is this. Given this statistical information, 
the rule according to which the experimenter chose the bag from 
which he made all his subsequent drawings, the infQr,nlation 
detailed above about the constitution of the contents of the 
various bags, I1nd the rule according to which the drawings were 
made when the bag to be used had been chosen, what is the prob
ability that the drl1wings were made from a particular bag Br 1 
Or, what is equivalent, what is the probability that the probability 
of drawing a white counter on each occasion throughout the 

experiment was mr 1 
n 

When this problem is solved we can raise the following question. 
Can we say that there is one particular bag (and, if so, which one) 
that is more likely than any other to have been the one on which 
the experiments were performed, in view of the data enumerated 
above 1 It will be found that it is possible, on certain assump
tions, to give a certain answer to this question. This answer, 
subject to these conditions, constitutes the Inverse Principle of 
Greatest Probability. 

We must now generalise the problem, and then solve it. Sup
pose that a series of N trials of instances of Q has been made 
uniler Bernoullian conditions, which we will denote by h, and 
that the proportion of R's among them has been p. Suppose 
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it is known that R(x)/Q(x) & h must have had one or other of 
the values PI' or P2' or . . . P., but it is not known which one 
of them it had. Suppose further that the subject of the experi
ment was selected in accordance with a certain rule k, such that 
relative to k the probability that R(x)/Q(x) & h = PI is Ql' the 
probability that it equals P2 is Q2' and so on for the other alter
natives. What is the probability, with respect to all these data, 
that the experiment was done on a subject for which 

R(x)/Q(x) & h = Pr ? 

Our problem, then, is to evaluate the expression 

R(x)jQ(x) & h = Pr. / : k. & .iN(R; Q) = p. 

In order to do this we will introduce the following temporary 
abbreviations. We will write the single letter P for the pro
position iN(R ; Q) = p. We will write the single letter P,. for 
the proposition R(x)/Q(x) & h = Pro The expression to be evalu
ated then can be written P,./k & P. 

Now by Lemma VII (Bayes's Principle) this is equal to 

P,.lk X PIP,. & k 
r-z 
S Prlk X P/Pr & k 

r=1 

qr X P/Pr & k which is equal to r-Z 
S qr X PjPr&k 

r=1 

But such expressions as P /Pr & k have already been evaluated 
in the first part of the Direct Bernoulli Theorem. For, when 
we once more write them out in full, they are of the form 

iN(R ; Q) = P . j : k . & . RxjQx & h = Pro 

So this part of the problem is now solved in principle, though 
it cannot be solved in detail unless the rule k enables us to give 
determinate values to ql' q2' ... q., i.e., to the antecedent 
probabilities that such and such a subject has been chosen for 
the experiment. 

It remains to consider for what value of P,. the probability 
P,.lk & P is a maximum. No general answer can be given to 
this question. Suppose, however, that the rule k is such that 
Ql = q2 = ... qz. Then the expression given above for P,.jk & P 
reduces to 

PIP,. & k 
r-z 
S PJP,. & k 

r=1 
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Now this will be a maximum when its numerator PjPr & k 
is a maximum. But P/Pr & k is an abbreviated way of writing 

fN(R ; Q) = Pr . I: k . & . R(x)/Q(x) & k = P ; 

and we have already proved in the Direct Principle of G1·eatest 
Probability that this is a maximum when Pr = p. 

We can now state the Inverse Principle of Greatest Probability, 
which is the proposition that we have just proved. It runs as 
follows. Suppose that a series of N trials of instances of Q 
has been made under the Bernoullian conditions, and that a 
proportion P of these Q's have been found to be R's. Suppose 
further that the probability of a Q being R might have had any 
of the z values PI' P2' . . . Pe, and that relative to the informa
tion supplied it was equally likely to have any of these values. 
Then, relative to all the suppositions detailed above, the most 
probable value of the probability of a Q being an R in this 
experiment is that one of the possible values PI' ... pz which 
is nearest to p. 

Before leaving this part of the Inverse Bernoulli Theorem it 
will be worth while to revert for a moment to our original example 
of the various bags from one of which the drawings are to be 
made. We shall then be able to see the point of the condition 
that all the alternative possible values of R(x)/Q(x) & k must 
be equally probable with respect to the rule k i£ the Inverse 
Principle of Greatest Probability is to hold. Suppose that this 
condition was not fulfilled. Suppose, e.g., that there were eleven 
bags, one with 0 %, one with 10 %, one with 20 %, ... and 
one with 100 % of white counters in it; and suppose that, 
instead of it being equally likely that anyone of these bags 
would be the one chosen as the subject of the experiment, the 
rule was such that it was very much more likely that the experi
ment would have been performed with the bag containing 20 % 
of whites than with any of the others. Suppose that 100 trials 
were made and that in 48 % of them the counter drawn was 
white .. Then it would obviously be quite unjustifiable to con
clude in accordance with the Inverse Principle of Greatest 
Probability that it is most probable that the experiment was 
done on the bag containing 50 % of whites. For we should be 
faced with two alternative improbabilities. (i) The bag that 
was most likely to have been chosen according to the rule of 
selection, viz., that .containing 20 % of white counters, may in 
fact have been chosen. But, if so, the 100 trials made on it 
have resulted in a most improbably large proportion of white 
drawings. Or (ii) the bag chosen may have been the one which 
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~ontains 50 % of white counters. If so, the 48 % of white 
.drawings which were obtained is a very probable result. But, 
on the other hand, the selection of this bag was a very improbable 
event. Now the final probability that the drawings were made 
from such and such a bag depends jointly on the initial prob
ability that that bag would have been chosen and on the 
probability that, if it were chosen, the results actually obtained 
would have followed. These two factors point in opposite 
directions in the case supposed, and so it is not surprising that 
no general conclusion can be drawn. 

(2·2) Inverse Principle of Great Numbers.-We will begin, as 
usual, with a concrete example. Suppose now that there are 
n + 1 bags, each containing n counters. We will call them 
Bo, B1, ; • . Bn. The number of white counters is to be 0 in Bo, 
1 in B1, ••• , and n in Bn- Then suppose n to be increased with
out limit. In that case every proper fraction between Ojl and 
I;L together with these two end-points, will be represented by 
one and only one of the bags. We know that one of these bags 
has been selected to be the subject of the experiment, but we do 
not know which one. The selection has been made in accordance 
with a certain rule k with respect to which the probability that 
such and such a bag has been selected is so-and-so. N trials 
are made with the selected bag, whatever it may be, and pN 
of these have been white. 

The proposition to be proved may be stated as follows. Let 
o and E be any two pre-assigned quantities. Then (subject to 
one condition about k, which will be stated below), no matter how 
small 0 and E may be, there is a number v of trials such that, if 
N exceeds v, the probability that the bag selected was one of those 
in which the proportion of whites does not differ from p by 
more than 0 does not differ from 1 by more than E. 

This proposition may be stated more colloquially as follows. 
By making the series of trials long enough you can always ensure 
that the probability of the bag selected being one in which the 
proportion of white counters differed by as little as you please 
from the proportion of white drawings in the series of trials 
differs by as little as you please from L 

The condition required is as follows. The rule k, in accordance 
with which the bag on which the trials are to be made is selected, 
may be of any kind, provided only that the probability with respect 
to k of a bag with the proportion p of white cotmters being selected 
is not O. 

It remains to generalise this proposition and to prove it. 
The general statement is as follows. Suppose (i) that an 
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experiment has been done under Bernoullian conditions, and 
that N instances of Q have been observed and that pN of them 
have been found to be R. (ii) That the value of R(x)/Q(x) & h 
may have been anything from 0 to 1, both inclusive, and it is 
not known which of these possible values it had. (iii) That the 
probability that the value of R(x)/Q(x) & h was in the immediate 
neighbourhood of p is not 0 with respect to k, where k is the only 
relevant datum available to us about the value of R(x)/Q(x) & h. 
Let a and E be any pre-assigned quantities. Then, however 
small 8 and E may be, there is a number v such that if N exceeds 
v the probability, with respect to the above three supposals, 
that R(ro)/Q(x) & h did not differ from p by more than 8 does 
not differ from 1 by more than E. The accurate expression for 
this in out symbolism is 
(8, E) : : : (rtrv) : : . N > v:::» N : : R(x)/Q(x) & k i:± P ± 8 . / : . 

k: & :iN(R ; Q) = p: & : R(x)/Q(x) & h = p. /k =p 0: . > 1 -E. 

The proof of this proposition may be stated as follows. Let 
us divide the interval between 0 and 1 into a very large number 
J1. of very small sub-intervals of equal length '1] adjoined to each 
other, so that fL'1] = 1. Then the 'proposition • The value of 
R(x)/Q(x} & h lies somewhere between 0 and l' is a disjunction 
of fL mutually exclusive alternatives of the form' The value of 
R(x)/Q(x) & h lies between 0 and '1], or between '1] and 2'1], or ... 
between 1 - '1] and 1 '. Let us denote a typical one of these 
alternatives, viz., 'The value of R(x)/Q(x) & h lies between 'T'YJ 
aild (r + 1)'1]' by Pro It is evident that r will range between 
o and J1. - 1. . 
. In precisely the same way the proposition 'The value of 
R(x}/Q(x) & h lies somewhere between p - 8 and p + 8', is a 
disjunction of 2fL8 mutually exclusive alternatives Pr , where 
r ranges from (p - 8)fL to (p + S)fL - 1. 

Let us denote the statistical proposition iN(R; Q) = p by P, 
as we did before. Then the question which concerns us is: 
To what limiting value, if any, does the probability 

p(P_">/I' v ..... p(p+«')/I-l: /P & k 
approach as N is. made greater and greater 1 

It is evident that we can apply Lemma VIII (The Exteruied 
Bayes Principle) to the probability in question. It is therefore 
equal to 

1'=/1 1 

S Pr/k X P/P".&k __ 0 
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Now consider the denominator of this fraction. Plainly it 
can be regarded as the sum of the following three parts, viz., 
(i) the terms from r = ° to r = (p - 8)11- - 1, both inclusive; 
(ii) the terms which also occur in the numerator; and (iii) the 
terms from r = (p + 8)11- to r = 11- - 1, both inclusive. Let us 
call the first and the third of these the 'fringes " and the second 
of them the ' kernel'. The fraction is, then, of the form 

B 
A+B+O' 

1£ we can show that, as N is increased without limit, (a) the 
fringes di:ffer by as little as We please from 0, whilst (b) the kernel 
remains finite, we shall have shown that the fraction differs by 
as little as we please ftom 1 if N be made great enough. And 
this is what we have to prove. (The second condition is needed 
as well as the first; for, if the first were fulfilled without the 
second, the fraction would assUme the indeterminate form 0/0.) 

The argument may be put as follows. The symbol P/Pr & k 
is simply an abbreviation-for 

iN(R; Q) = p . I: k' . & . R(x)/Q(x) & h v (1' + t)1] ± t1J. 
Now, according to the Direct Principle of Great Numbers, as 

N increases without limit this will differ by as little as we please 

from 1 when r1] = p, i.e., when r =:e, i.e., when r = I1-p. 
1] 

Therefore by increasing N sufficiently we can make every term 
of the form PIP .. & k fbr which r is not in the immediate neigh
bourhood of I1-P differ by as little as we please from O. There
fore, however small 8 may be, if N be made large enough each 
term in the fringes will consist of a term of the form Pr/k 
multiplied by a term which is vanishingly small. Now all terms 
of the form Pr/k are positive and hot greater than 1 by Postulate 
(ii). Therefore, whatever their actual values may be, the 
fringes can be made to differ by as little as we please from 0 
by sufficiently increasing N. On the other hand, provided that 
the terms of the formPr/k are not equal to ° in the immediate 
neighbourhood of r = I1-P, the kernel will not vanish. And so 
the fraction will approach as nearly as we please to 1, no matter 
what may be the values of Prlk for the various values of r, pro
vided only that Pr/k is not zero in the immediate neighbourhood 
of r = Il-p. And this is what we set out to prove. 

The following three remarks are worth making before we 
leave this theorem. (1) The argument just ended shows the 
precise force of the condition that R(x)/Q(x) & h = P . /k must 
not be zero. This condition is needed in order that the fraction 
may not reduce to the indeterminate form 0/0. 
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(2) If we go back to the example of the bags we shall see that 
the conclusion, and the conditions under which it is reached, are 
in accord with common sense. Provided that there is" a finite 
antecedent probability that the bag which was used for the experi
ment contained a proportion of white counters in the immediate 
neighbourhood of p, it does not matter what may be the ante
cedent probabilities of the bag containing other proportions of 
white counters. For suppose that the antecedent probability 
of the bag containing a proportion of white counters widely 
different from p is quite high. Nevertheless, as more and more 
tlials were made with it and the proportion of white drawings 
still remained obstinately in the neighbourhood of p, it would 
become more and more unlikely that with such a bag such results 
would be obtained. Eventually the improbability that the 
actual results should be obtained from a bag of the kind .which 
is antecedently most likely to have been used would (to quote 
a happy phrase of Dr. Harold Jefireys) 'swamp' the antecedent 
probability that the bag was of the kind supposed. 

(3) The following considerations might strike an attentive 
reader as paradoxical. The Inverse Principle of Great Numbers 
seems to be a much more determinate and exciting proposition 
than the Inverse Principle of Greatest Probability. Yet in order 
to deduce the former we had to impose a much more rigid con
dition on the possible values of R(x)/Q(x) & h = Pr' /k than 
was needed in deducing the latter. I think that this apparent 
paradox is removed when we remember the following fact. The 
Inverse Principle of Great Numbers is" jtself a conditional" pro
position, and, although its conseqwmt (that a certain probability 
will differ as little as we please from 1) is highly determinate 
and exciting, this is subject to a very severe anteceiknt condition, 
viz., 'if the frequency -ratio of R's among Q's is p when N is 
indefinitely increased'. The Inverse Principle of Greatest 
Probability does not contain any such limitations within itself, 
and therefore it is not surprising that more rigid conditions have 
to be inserted in the premisses from which it is proved. 

Theorem 3. The Statistical Generalisation Theorem.-In terms 
of counters and bags the problem with which we are now con
cerned may be stated as follows. Suppose that N drawings 
have been made under Bernoullian conditions from a bag of 
unknown constitution, and that pN of them have been white. 
Suppose that the process of drawing and replacing were now to 
be continued indefinitely. Then (1) what is the most likely 
proportion of white draVl-ings, relative to this information, in 
the indefinitely prolonged series 1 And (2) as N is indefinitely 
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increased does the probability that the proportion of white draw
ings in the indefinitely prolonged series will be that which is most 
probable approach indefinitely nearly to 1 ? 

The general line of argument is obvious at once. It will be 
in two stages; the first backwards from the observed results 
to the probable constitution of the bag from which the counters 
have been drawn, and the second forwards from this to the 
probable results of future drawings. The backward step will 
use the Inverse Bernoulli Theorem, and the forward step will 
use the Direct Bernoulli Theorem. According to the Inverse 
Principle of Greatest Probability, if the antecedent probability 
of the bag being of anyone constitution is the same as that .of 
its being of any other, the most probable proportion of white 
counters in the bag in view of the observed results is p. Ac
cording to the Direct Principle of Greatest Probability, if the 
proportion of white counters in the bag used is p the most 
probable proportion of white drawings in a series of drawings 
from it is p. In this way one can see in outline that it is at any 
rate plausible to conclude that the most probable proportion of 
white drawings· in the indefinitely extended series will be the 
same as the proportion in the finite series of actual drawings, 
provided only that the antecedent probability of the bag con
taining any of the logically possible proportions of white counters 
is the same. 

A similar rough argument can be used in connexion with the 
second part of the problem. By the Inverse Principle of Great 
Numbers, if N be made great enough and the proportion of white 
drawings in the actual series be p, the probability that the pro
portion of white counters in the bag used is p differs as little a.s 
we please from 1, provided only that the antecedent probability 
of the bag having this constitution is not zero. By the Direct 
Principle of Great Numbers, if the proportion of white counters 
in the bag be p and the number of drawings be made great 
enough, then the pl'Dbability that the proportion of white drawings 
will differ from p by as little as we please will differ from 1 by as 
little as we please. So we can see in outline that it is plausible 
to conclude that, if the series of actual observations is -long 
enough, the probability that the proportion of white drawings 
in the indefinitely extended series of possible drawings.is the 
same as the proportion in the actulJ,l series will differ by as little 
as we please from 1. The condition here is that the antecedent 
probability that the bag used was one that contained this 
proportion of white counters shall not be zero. (It is important 
to notice here that we have two series of drawings to consider, 

8 
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(i) a very long but finite series of actual drawings, and (ii) an 
indefinitely long extension of possible further drawings. The 
former is involved in the supposal, and the latter in the proposal.) 

We must now generalise the Theorem and try to provide a proper 
proof, as distinct from a sketchy outline of an argument, for it. 

I shall symbolise the proposition' The proportion of R's in an 
indefinitely extended series of Q's is p' by Joo(R; Q) = p. It 
will be' remembered that we discussed the definition of this 
proposition under the heading Statistical PropositWns in the 
first Section of this paper (Part I). We saw that Hr. von Wright 
gave a rather complicated definition. But this definition is 
logi.cally equivalent to the following, which was there labelled 
(iii), viz., 

(S) : (ITrv) . N > v ::» NJN(R ; Q) v p ± S. 
And this is simply the statement that IN(R ; Q) approaches a 
limit as N is indefinitely increased, and that that limit is p. 
So we may write 

Joo(R; Q) = p. == . Lt IN(R; Q) = p. 
N=oo 

This being understood, the two propositions which we have to 
prove may be stated as follows: 

(3·1) Statistical Principle oj Greatest Probability.-If 
R(x)jQ(x) & h = y . jk 

has the same value for all values of y from 0 to 1, both inclusive, 
thenfoo(R; Q) = z. / : k. & .IN(R; Q)~ p is a maximum when 
z=p. . 

(3-2) Statistical Principle oj Great Numbers.-Provided that 
R(x)jQ(x) & h = p . jk is not equal to 0, then 
(S, E) : : . (ITrv) : : N > v::» N: . Joo(R ; Q) v p ± S . j :IN(R; Q) 

= p . & . k: :> 1 - E. 

Now Hr. von Wright claims to prove these propositions in a 
way which is certainly' very neat and interesting if it is valid. 
I cannot say that I feel altogether happy about these proofs, 
especially that of the Statistical Principle of Greatest Probability. 
The argument depends on (i) a certain general proposition in 
formal probability which is asserted but not proved, and (ii) the 
assertion that the Direct and the Inverse Bernoulli Theorems 
are equivalent respectively to a certain pair of other proposi
tions. These propositions are stated in words and not in symbols, 
and the equivale~ce is not explicitly proved. The general 
proposition which forms the first of these two premisses· is 
certainly true, and I shall prove it as a Lemma. I shall then 
state formally the pair of propositions which are alleged to be 
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equivalent respectively to the Direct and the Inverse Bernoulli 
Theorems. Finally I shall complete the argument as stated by 
Hr. von Wright. The reader should then be in a position to 
judge for himself whether it is conclusive or not. We begin 
then with what I will call Lemma IX. 

Lemma IX. If a and b be any two propositiong, and 
~/b & k = b/a & k = 1, 

then if c be any third proposition alc & k = ble & k. 
The proof is as follows. 

B L VI Ib & k _ alk X bla & k 
y emma a - b/k . 

But by hypothesis alb & k = bla & k = 1. Therefore 
alh = b/k. . (1) 

Nowe == : e & b. v. e & b. 
Therefore, by I,emma IV, 

cia & h == bla & h X c/b &, a & h -+ b;a & It X c/b & a & h. 
But bla & h = 1 by Hypothesis, and therefore bla & h = 0 

by Lemma I. 
Therefore cia & It = clb & a & h. • (2,1) 

Again c == : c & a . v . c & a. 
From this and the fact that alb & It = 1 by hypothesis we can 

prove in exactly the same way that 
clb & h = cia & b & It .. 

Therefore cia & h = clb & h. 
Now by Lemma IV. 

I & h - clh X alc & h 
c a - alh . 

Ib & h _ cllt X blc & k 
e - blh . 

I 

and 

alc & k ble & k 
Therefore from (3) ----;;;rh = ~. 
But from (1) alk = blk. 

Therefore ale & k = b/c & k. Q.E.D. 

(2,2) 
(3) 

(4'1) 

(4,2) 

Now Hr. von Wright asserts, in effect, that (i) the Direct 
Principle of Great Numbers is equivalent to 

foo(R; Q),= p. I : k. &. R(x)/Q(x) & It = p: = 1 . (ex) 
and that (ii) the Inverse Principle of Great Numbers is equivalent 
to 

R(x)/Q(x) & h = p. I : k. & ·foc(R ; Q) = p: = I (/3) 
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Let us accept this for the sake of argument. Then we can 
apply Lemma IX. In Lemma IX for a put R(X)/Q(X) & h = p; 
for b put f!f.>(R; Q) = p; and for c put fN(R; Q) = p. Then 
alb & k = bla &, k = 1. And therefore alc & k = blc & k. That 
IS 

f !f.>(R ; Q) = p . I : k . & ·fN(R ; Q) = p : = : R(x)jQ(x) & k = 
p . j : k . & .fN(R ; Q) = p (A) 

Having established Equation (A) in this way, Hr. von Wright 
uses it to prove the Statistical Principle of Greatest Probability 
and the Statistical Principle of Great Numbers as follows. 

(i) Subject to the condition that R(x)jQ(x) & k = z. Ik has 
the same value for all values of z from 0 to 1, both inclusive, 
the Inverse Principle of Greatest Probability tells us that 
R(x)/Q(x) & h = z. j : k . & .fN(R ; Q) = p is a maximum when 
z = p. But when z = p this expression is equal to 

fro (R; Q) = p. / :k. & .fN(R; Q) = p, 

by Equation (A). Therefore, subject to the condition men
tioned above, 

foo(R; Q) = z. /: k. & .fN(R; Q) = p 
is a maximum when z = p. And this is the Statistical Principle 
of Greatest Probability. 

(ii) Subject to the condition that R(x)/Q(x) & h = p . Ik is 
not zero, the Inverse Principle of Great Numbers tells us that 
the expression on the right"hand side of Equation (A) approaches 
as near as we please to 1 if N be sufficiently increased. There
fore the same is true of the expression on the left of Equation (A). 
And this is the Statistical Principle of Great Numbers. 

I have no doubt that this is a fair and accurate account, in 
our symbolism, of Hr. von Wright's arguments. Are they 
valid '? We must distinguish two questions: (1) Is the proof 
of Equation (A) valid 1 (2) If so, is the reasoning from it valid 
in (i), or in (ii), or in both? I will take these two questions 
in turn. 

(1) Equation (A) certainly follows from the premisses; and 
one of the premisses, viz., Lemma IX, is certainly true. So 
the only possible doubt about the proof of it is a doubt whether 
Proposition (IX) is a legitimate transformation of the Direct 
Principle, and Proposition (f3) of the Inverse Principle, of Great 
Numbers. 

Now when I put these propositions into words and consider 
their meaning it does seem to me that these alleged equivalences 
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are highly plausible. But this is not enough. It ought to be 
possible, by using the definition of foo(R; Q) = p given above, 
to prove that the Direct Principle of Great Numbers is equivalent 
to (~) and that the Inverse Principle of Great Numbers is 
equivalent to (/3). I must confess that I have not succeeded in 
doing this to my own satisfaction. It does not follow that it 
cannot be done, but my failure to do it prevents me from feeling 
altogether comfortable about the proof of Equation (A). I 
would remark that it would be enough for Hr. von Wright's 
purpose to show that the Direct Principle entails (~) and that 
the Inverse Principle entails (/3). It is .not necessary that these 
entailments should be reversible. But I have failed to prove 
even these milder propositions to my own satisfaction, though 
I see no reason to doubt that they are true. 

(2) Suppose that (~) and (fJ) can be shown to follow from the 
Direct and the Inverse Principles of Great Numbers respec
tively, and that Equation (A) can therefore be proved to be true. 
Then I can see nothing to criticise in the deduction from it of 
the Statistical Principle of Great Numbers. But I do not feel 
comfortable about the attempted deduction from it of the 
Statistical Principle of Greatest Probability. My difficulty here 
is the following. Suppose that Equation (A) had been the 
proposition: 'For every value of z 

foo(R; Q) = z. / : k. & ·fN(R; Q) = p: 
= : R(x)/Q(x) & II, = z. / : k. & .fN(R; Q) = p '. 

Then no doubt it would follow that, since the right-hand side is 
a maximum for z = p, the left-hand side is also a maximum for 
z = p. But this is not what Equation (A) asserts. It asserts 
the equality between the left-hand and the right-hand side 
only for the particular case of z = p. This seems to me to make 
the argument a non-sequitur. 

I shall now suggest an alternative way of proving the two 
parts of the Statistical Generalisation Theorem. 

Let us, as before, divide the interval between 0 and 1 into a 
very large number fL of very small adjoined sub-intervals each 
of length 'Y}, so that fL'Y} = 1. As before, let Pr stand for the 
proposition' R(x)/Q(x) & h lies between r'Y} and (r + 1)'Y}.' Let 
us write P oo(z) for the proposition f oo(R ; Q) = z; and let 
us write PN(p) for the proposition fN(R; Q) = p. Then the 
two propositions which we have to prove may be written: 

(i) P 00 (z)/PN(p) & k is a maximum when z = p, provided that 
Pr/k has the same value for all values of r; and 

(ii) Lt P co(p)/PN(p) & k = I, provided that P I'P/k is not zero. 
N~oo 
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The proofs are as follows. 
(i) Since the alternatives Po to Pp-l are mutually exclusive 

and· collectively exhaustive, we have, by Lemma V, 
r=p-l 

P 00 (z)/PN(P) & k= S Pr/PN(p) & k X P 00 (z)/Pr & PN(P) & k (1) 
,.=0 

We note also that Proposition (ex) can be written in the present 
notation as 

P 00 (z)JPpz & k = l. 

Again, the InveJrse Principle of Greatest Probability can be 
written in our present notation as: 'P pz/P N(P) & k is a maximum 
when z = p, provided that P,.lk has the same value for all values 
of r '. 

Consider the typical factor P 00 (z)/P,. & PN(P) &k in the 
expression on the right-hand side of Equation (1). The term 
PN(P) is superfluous, when conjoined in the supposal with P,., 
as regards the proposal P oo(z). For the fact that, in a series of 
N trials of Q's under Bernoullian conditions, such and such a 
proportion have been found to be R is relevant only in the follow 
ing way to the probability that the proportion of R's in an 
indefinitely extended series of trials will be so-and-so. It is 
relevant only in so far as it affects the probability that 
R(x)jQ(x) & h had such and such a value throughout the experi
ment. But the datum P,. settles this question independently; 
for it tells us with certainty that the value of R(x)/Q(x) & h lay 
between 'f'1J and (r + 1)71. Therefore PN(p), when conjoined in 
the supposal with Pr , is irrelevant to the proposal P oo(z). So 
we can replace each such factor as P 00 (z)jPr & PN(P) & k on the 
right-hand side of Equation (1) by the simpler factor P 00 (z)JPr & k. 

Now, by Proposition (ex), P 00 (z)JPr & k is equal to 1 when 
r = j-LZ, and is equal to 0 for all other values of r. So the expres
sion on the right-hand side of Equation (1) reduces to the single 
term P pz/P N(P) & k. And, by the I nVeJTse Principle of Greatest 
Probability, this is a maximum when z = p, provided that 
P,./k has the same value for all values of r. Therefore the same 
is true of the left-hand side of Equation (1); i.e., P 00 (Z)JPN(P) & k 
is a maximum when·z = p, provided that Prlk has the same 
value for all values of r. Q.E.D. 

(ii) By precisely the same reasoning as we used above we 
can show that 

POO(P)jPN(P) & k = PPfl/PN(P) & k. (2) 

But the InveJrse Principle of Great NumbeJrs, written in our present 
notation, simply is the proposition that Lt PPfl/PN(P) & k = 1 

N-+oo 
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provided that P p'P/k is not zero. Therefore, provided that 
Pp'P/k is not zero, Lt P 00 (P)fPN(P) & k = 1. Q.E.D. 

N ...... oo 
The following points should be noted about these proofs. 

(1) Like Hr. von Wright's, they presuppose that Proposition (~) 
is guaranteed by the Direct Principle of Great Numbers. 
(2) Unlike his, they do not presuppose Proposition (fJ) and they 
make no use of Lemma IX. (3) If, as it seems to me, there is 
a defect in the argument by which Hr. von Wright claims to 
deduce the Statistical Principle of Greatest Probability from 
Equation (A), this defect is avoided. 

There is one further matter to be mentioned beforewe'leave 
Theorem 3. It will be remembered that the Statistical Principle 
of Greatest Probability has been proved only subject to the 
condition that p;/k has the same value for all values of r, i.e., 
that all possible values from 0 to 1 of R(x)/Q(x) & k are equally 
likely with respect to k. Now Hr. von Wright claims that this 
is entailed by the following condition, viz., that the datum 
fN(R; Q) = p (i.e., PN(P» is the only information which we are 
given that is relevant to the proposal foo(R; Q) = p (i.e., to 
P 00(P». So he takes this latter assumption as the condition 
under which the Statistical Principle of Greatest Probability 
holds good. 

His argument, which seems to me to be quite sound, 18 as 
follows. 

By Lemma V 
r-p-l 

P 00 (z)/k = S Pr/k X P 00 (z)fPr & k. 
r=O 

Now suppose that Pr/k does not have the same value for all 
values of r, but is a maximum for a certain particular value of r, 
e.g., when r = I-'A. By the Direct Principle of Greatest Proba
bility the factor P 00 (z)fP p}. & k will be greatest if z = A. There
fore, if and only.if z = A, the greatest of the factors Pr/k in the 
series on the right (viz., Pp}./k) will be multiplied by the greatest 
possible value of the factor associated with it (viz., P(A)fPp). & k). 
Therefore, on our supposition, k will be more favourably relevant 
to the proposal P 00 (A) than to any similar proposal in which the 
value of z is other than A. That is to say PN(P) will not be the 
Qnly information which we are given that'is relevant to the 
proposal P oo(p). J3y contraposing this entailment we reach 
Hr. von Wright's conclusion. 

(To be con.cluded.) 
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